Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
نویسندگان
چکیده
The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.
منابع مشابه
Magneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching
Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculatio...
متن کاملMagneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching
Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculatio...
متن کاملPredicting three-dimensional displacement around the tunnel and its impact on the value of Q-system
Having knowledge of stability of an underground space depends on stresses and strains around it. Creating underground tunnels leads to significant changes in the rock mass stress. Therefore, to achieve the necessary stability, stresses and deformations around the tunnel must be examined carefully. Usually, stress-strain behavior analysis is conducted in two-dimensional mode. This paper was cond...
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملThe Role of the Zagros Suture on Three Dimensional Deformation Pattern in Eghlid-Deh Bid Area of Iran
Deformation pattern of the northeastern part of the Iranian-Arabian collision zone (i.e., mainly Sanandaj-Sirjan Belt or Zone) is the main concern of this paper. Here, we investigate the stress distribution and displacement pattern of Eghlid-Deh Bid area as affected by the position of Zagros suture using a three dimensional mechanical model. The modeled area is located between the Zagros Thrust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 82 4 شماره
صفحات -
تاریخ انتشار 2002